SensoLyte® ADHP Hydrogen Peroxide Assay Kit *Fluorimetric* | Revision Number:1.1 | Last Revised: October 2014 | | |---------------------|--|--| | Catalog # | AS-71112 | | | Kit Size | 500 Assays (96-well) or 1250 Assays (384-well) | | - Convenient Format: Complete kit includes all the assay components. - **Optimized Performance:** Optimal conditions for quantifying hydrogen peroxide and detecting oxidase. - Enhanced Value: Less expensive than the sum of individual components. - *High Speed:* Minimal hands-on time. - Assured Reliability: Detailed protocol and references are provided. ## Kit Components, Storage and Handling | Component | Description | Quantity | |-------------|-----------------------------|---------------------| | Component A | ADHP | 10 mM, 250 μL | | Component B | H_2O_2 standard | 1 vial | | Component C | Assay buffer | 60 mL | | Component D | HRP, Horseradish peroxidase | 5 vials, 100μL/vial | ## Other Materials Required (but not provided) - 96-well or 384-well microplate: Black, flat-bottom microplates with non-binding surface. - <u>Fluorescence microplate reader</u>: Capable of detecting emission at 590 nm with excitation at 530-560 nm. #### Storage and Handling • For convenience, Component C can be stored at room temperature. ## Introduction Reactive oxygen species (ROS) play an important role in a variety of biological events, such as inflammation, ischemia and reperfusion, and neurodegeneration. Hydrogen peroxide (H_2O_2) is membrane permeable and is more stable than other ROS. It is often chosen to represent the ROS released by cell or cell organelles (e.g. mitochondria, ¹ activated leukocytes²). H_2O_2 is also a co-product of many oxidase-catalyzed reactions. Consequently, it can serve as an indicator of the activity of oxidases (e.g. NADPH oxidase³, glucose oxidase⁴, and monoamine oxidase⁵). The SensoLyte[®] ADHP Hydrogen Peroxide Assay Kit provides a convenient, highly sensitive fluorescent assay for quantifying H_2O_2 in solutions, in cell extracts and in live cells. In the enzyme-coupled reaction, non-fluorescent ADHP (10-Acetyl-3, 7-dihydroxyphenoxazine) can be oxidized to the strongly fluorescent resorufin in presence of H_2O_2 and horseradish peroxidase (HRP). The signal of resorufin can be easily read by a fluorescence microplate reader at Ex/Em=530-560 nm/590 nm. #### **Protocol** Note: Warm all kit components to room temperature before starting the experiment. #### 1. Prepare stock solution. H₂O₂ stock solution (1 M): Add 100 µL of deionized water into the H₂O₂ vial (Component B) to get 1 M stock solution. Store this stock solution tightly capped at 4°C. ## 2. Set up the H_2O_2 standard curve (Optional). • Dilute 1 M H₂O₂ stock solution to 40 μM in assay buffer (Component C). Perform 2-fold serial dilutions with the assay buffer to get 20, 10, 5, 2.5, 1.25, and 0.63 μM H₂O₂ solutions. Add 50 μL/well of the serially diluted H₂O₂ solution to a 96-well plate or 20 μL/well to a 384-well plate. Include a negative control that does not contain any H₂O₂ #### 3. Prepare test samples. • Add 50 μL/well (96-well plate) or 20 μL/well (384-well plate) of samples (e.g. mitochondria¹, activated leukocytes², monoamine oxidase with its substrate benzylamine³). Note: Extremely large amount of H_2O_2 (e.g. >100 μ M) may further convert fluorescent resorufin to non-fluorescent resazurin and lead to reduction of fluorescence signal. It is necessary to test your sample with several different dilutions. #### 4. Prepare ADHP reaction mixture. • Prepare fresh ADHP reaction mixture according to the following Table 1 and keep away from light. | 7D 11 1 | ADIID | . • | • , | C | O / 11 | 1 1 . | (100 | ` | |----------|-------------------|--------|-----------|---------|-----------|-------|----------------|----------| | Table I | Δ I)HP ro | action | mivfiira | tor one | UA_WAL | nlate | 1 11111 200230 | 3 1 | | Taine I. | ADIII 10 | ıcıım | IIIIXtuic | TOT OHE | - 7U-WCII | mate | (100 assavs | ` | | Components | Volume | |----------------------------|---------| | ADHP (Component A) | 50 μL | | HRP (Component D) | 100 μL | | Assay buffer (Component C) | 4.85 mL | | Total volume | 5 mL | Note 1: This reaction mixture can detect 0.1 nmol of H_2O_2 with a linear range of up to 2 nmol (Figure 1). Lowering the ADHP concentration in the reaction mixture can decrease background and increase assay sensitivity. 10 μ M ADHP can detect as low as 2 pmol of $H_2O_2^{-2}$. 2 μ M ADHP was used to detect H_2O_2 produced by mitochondria¹. Note 2: You may change the assay buffer to any buffer appropriate for your samples. For example, you may use Krebs-Ringer phosphate for detecting H₂O₂ released from activated human leukocytes² or modified buffer for mitochondria¹. You may also add stimulating reagents in the reaction mixture.² #### 5. Detect H_2O_2 - 5.1 Add 50 μL/well (96-well plate) or 20 μL/well (384-well plate) of ADHP reaction mixture. Mix the reagents by gently shaking the plate for 30 sec. - 5.2 Incubate the reaction at the desired temperature for 15-30 min. Measure emission at 590 nm with excitation at 530-560 nm. **Figure 1.** The standard curve of H_2O_2 H_2O_2 was serially diluted and detected according to the above protocol. With the total assay volume of $100~\mu L$, the assay can detect as low as $1~\mu M$ (0.1 nmol) H_2O_2 with a linear range up to $20~\mu M$ (2 nmol) ($R^2 > 0.98$). (n=2, mean±S.D.) ## References - 1. Votyakova, T.V. and Reynolds I.J., *J. Neurochem.* **79**, 266 (2001) - 2. Mohanty, J.G. et al. *J. Immunol. Methods.* **202**, 133 (1997) - 3. Zhou, M. et al. Anal. Biochem. 253, 162 (1997) - 4. Sanchez, F.A. et al. *Anal. Biochem.* **187**, 129 (1990) - 5. Youdim, M.B. and Tenne M., *Methods. Enzymol.* **142**, 617 (1987)