

Product Data Sheet

Recombinant Human α-Synuclein (1-140), Hilyte[™] Fluor 488 Labeled **Product Name:**

Catalog Number: AS-55457

Lot Number: See label on vial

Amount: 200 µg

Source: The recombinant human α-synuclein (1-140) (GenBank Accession # NP 000336) was

expressed and purified from E. coli and conjugated with the fluorescence dye HiLyte

Fluor 488.

Purity: Greater than 90% as determined by SDS-PAGE.

Fluorescence: Green fluorescence. Excitation/Emission wavelengths= 490nm/525nm

DOS: See label on the vial

HiLyteTM Fluor 488 labeled human α-synuclein is supplied frozen at 1 mg/ml in 10 mM Storage:

sodium phosphate buffer (pH=7.0). Store at 2-4 °C for immediate use within 1 week or

at -80 °C for up to 12 months. Keep in dark and avoid repeated freeze-thaw cycles.

Description: Parkinson's disease is predominantly a movement disorder resulting from degeneration of dopaminergic neurons in the substantia nigra. The cause of the disease is unknown, but substantial evidence suggests that the aggregation of α -synuclein is a critical step in the etiology of Parkinson's disease (PD). α -Synuclein is an abundant brain protein of 140 residues that present in high concentration at presynaptic terminals and is found in both soluble and membrane-associated fractions of the brain. Several possible functions have been suggested, and it appears to be involved in vesicle release and trafficking.

Related Products

Product Name	Cat. #
EndoClearPlus Recombinant human a-synuclein (1-140)	AS-56081
Recombinant Human β - Synuclein (1 - 134)	AS-55458
SensoLyte® Anti-a-Synuclein (Human) ELISA Kit	AS-55550-H
EndoClear Recombinant human a - synuclein (1 - 140)	AS-55555
Recombinant human a - synuclein (1 - 140), biotin labeled	AS-55581

References:

- Trojanowski, J. Q. & Lee, V. M. (2003) Ann. N. Y. Acad. Sci. 991, 107-110.
- Masliah, E., et al. (2000) Science 287, 1265-1269.
- Van Der, P. H, et al. (2000) J. Neurosci. 20, 6021-6029.
 Feany, M. B. & Bender, W. W. (2000) Nature 404, 394-398.
- 5. Weinreb, P. H., et al. (1996) Biochemistry 35, 13709-13715.

For in vitro research use only.